PROLABS - 3CSFP82-C

125 MBd Fast Ethernet SFP (Small Form Pluggable) Transceiver

3CSFP82-C Overview

PROLABS's Fast Ethernet SFP optical transceivers comply with Fast Ethernet standards at 125MBd data rate. The 3CSFP82-C SFP optical transceivers provide a quick and reliable interface for singlemode applications. In addition, they comply with the Small Form Factor Pluggable Multi Sourcing Agreement (MSA).

Product Features

- Up to 125 MBd bi-directional data links
- Comply to SFP MSA
- Hot-pluggable SFP footprint
- Uncooled 1310nm FP laser transmitter
- Duplex LC connector
- Up to 15Km on SMF
- Single power supply 3.3V
- RoHS Compliance
- Class 1 laser product complies with EN 60825-1
- Operating temperature range: 0°C to 70°C.

Applications

125MBd Fast Ethernet

Ordering Information

	Ordering informati	on the state of th
Part Number		Description
	3CSFP82-C	Fast Ethernet SFP LC Connectors 1310nm SingleMode 15KM

General Specifications

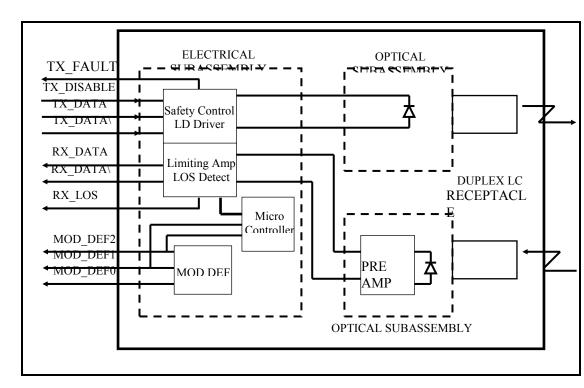
Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Data Rate	DR		125		MBd	
Bit Error Rate	BER			10^{-12}		
Operating Temperature	T_{OP}	0		70	°C	Case temperature
Storage Temperature	T_{STO}	- 40		85	°C	Ambient temperature
Supply Current	Is		165	300	mA	For electrical power interface
Input Voltage	V_{CC}	3.1	3.3	3.5	V	
Maximum Voltage	V_{MAX}	- 0.5		4.5	V	For electrical power interface

Optical Characteristics – Transmitter V_{CC} =3.1V to 3.5V, T_{C} =0 $^{\circ}$ C to 70 $^{\circ}$ C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output Optical Power	P_{TX}	– 15		- 8	dBm	Class 1 Product
Optical Center Wavelength	λ_{C}	1260		1360	nm	
Extinction Ratio	ER	10	11		dB	
Spectral Width (RMS)	Δλ			7.7	nm	
Optical Rise/Fall Time (20% - 80%)	T_{RF_IN}			1300	ps	
Relative Intensity Noise	RIN			- 120	dB/Hz	
Generated Jitter (peak to peak)	GJ_T			0.07	UI	
Generated Jitter (rms)	GJ_{RMS}			0.007	UI	
Mask Margin			20%			

Optical Characteristics – Receiver V_{CC} =3.1V to 3.5V, T_{C} =0C to 70C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Optical Center Wavelength	λ_{C}	1260		1360	nm	
Average Rx Sensitivity	R_{X_SEN}	- 28		- 8	dBm	PRBS 2 ²³ -1
Optical Rise/Fall Time (20%-80%)	$T_{R/F}$			1300	ps	
Generated Jitter (peak to peak)	GJ_R			300	ps	
Loss of Signal-Asserted	P_{LOS_A}	- 45			dBm	
Loss of Signal-Deasserted	P_{LOS_D}			- 28	dBm	
Loss of Signal-Hysteresis		0.5			dB	


Electrical Characteristics – Transmitter V_{CC} =3.1V to 3.5V, T_{C} =0 $^{\circ}$ C to 70 $^{\circ}$ C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R _{IN}		100		Ω	Non condensing
Single ended data input swing	V_{IN_PP}	250		1200	mV	
Transmit disable voltage	V_D	V _{CC} - 1.3		V_{CC}	V	
Transmit enable voltage	V_{EN}	V _{EE}		V _{EE} +0.	V	
				8		
Transmit Disable Assert Time	•		•	10	us	

Electrical Characteristics – Receiver V_{CC} =3.1V to 3.5V, T_{C} =0 $^{\circ}C$ to 70 $^{\circ}C$

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Single ended data output swing	V_{OUT_PP}	300	400	800	mV	
Data output rise time (20%-80%)	T_R		250	500	ps	
LOS Fault	V_{LOS_Fault}	V _{CC} -		V_{CC_HO}	V	
		0.5		ST		
LOS Normal	V_{LOS_normal}	V_{EE}		V_{EE} +0.	V	
				5		

Block Diagram of Transceiver

Transmitter Section

The FP driver accept differential input data and provide bias and modulation currents for driving a laser. An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power. 1310 nm in an eye safe optical subassembly (OSA) mates to the fiber cable.

TX DISABLE

The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on within 1ms when TX_DISABLE is low (TTL logic "0").

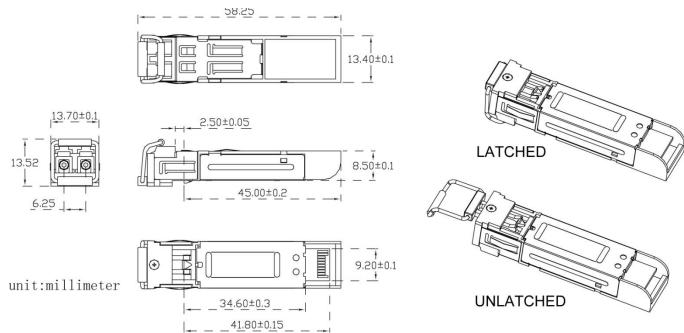
TX_FAULT

When the TX_FAULT signal is high, output indicates a laser fault of some kind. Low indicates normal operation.

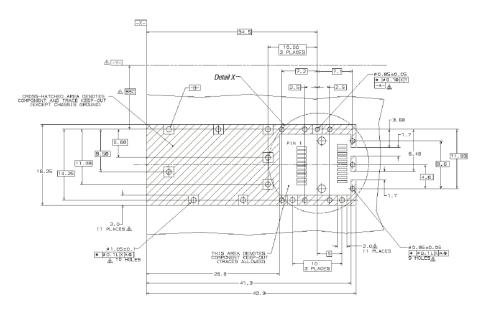
Receiver Section

The receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a Limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting Amplifier is AC-coupled to the transimpedance amplifier, with internal 100Ω differential termination.

Receive Loss (RX_LOS)

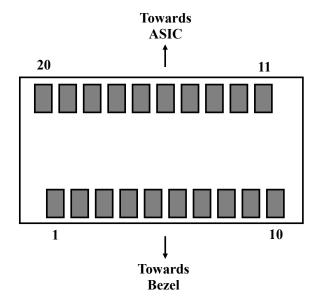

The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.

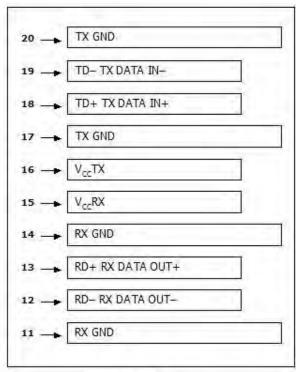
Controller Section

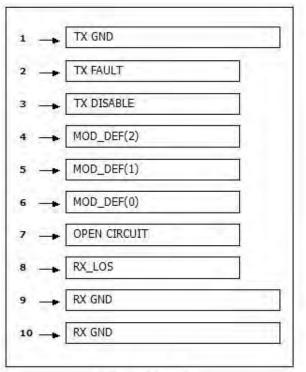

The micro controller unit monitors the operation information of LD driver and Limiting Amplifier. And report these status to the customer.

Dimensions

PCB Layout Recommendation




- Datum and Basic Dimension Established by Customer
- Rads and Vias are Chassis Ground, 11 Places
- AThrough Holes are Unplated



Electrical Pad Layout

Top of Board Bottom of Board

Pin Assignment

PIN#	Symbol	Description	Remarks
1	V_{EET}	Transmitter ground (common with receiver ground)	Circuit ground is isolated from chassis ground
2	T_{FAULT}	Transmitter Fault. Not supported	V
3	T_{DIS}	Transmitter Disable. Laser output disable on high or open	Disabled: T _{DIS} >2V or open Enabled: T _{DIS} <0.8V
4	MOD_DEF (2)	Module Definition 2. Data line for serial ID	Should Be pulled up with
5	MOD_DEF (1)	Module Definition 1. Clock line for serial ID	4.7k – 10k ohm on host
6	MOD_DEF (0)	Module Definition 0. Grounded within the module	board to a voltage between 2V and 3.6V
7	Rate Select	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation	LOS is open collector output
9	V_{EER}	Receiver ground (common with transmitter ground)	Circuit annual in
10	V_{EER}	Receiver ground (common with transmitter ground)	Circuit ground is isolated
11	V_{EER}	Receiver ground (common with transmitter ground)	from chassis ground
12	RD-	Receiver Inverted DATA out. AC coupled	
13	RD+	Receiver Non-inverted DATA out. AC coupled	
14	V_{EER}	Receiver ground (common with transmitter ground)	Circuit ground is isolated from chassis ground
15	V_{CCR}	Receiver power supply	
16	V _{CCT}	Transmitter power supply	
17	V_{EET}	Transmitter ground (common with receiver ground)	Circuit ground is connected to chassis ground
18	TD+	Transmitter Non-Inverted DATA in. AC coupled	
19	TD-	Transmitter Inverted DATA in. AC coupled	
20	V_{EET}	Transmitter ground (common with receiver ground)	Circuit ground is connected to chassis ground

References

- 1. IEEE standard 802.3. IEEE Standard Department, 2002.
- 2. Small Form Factor Pluggable (SFP) Transceiver Multi-Source Agreement (MSA), September 2000.
- 3. Bellcore GR-253 and ITU-T G.957 Specifications.