PROLABS-QK724A-C

14.025GBd SFP+ Short Wavelength (850nm) Transceiver

QK724A-C Overview

PROLABS's QK724A-C SFP+ optical transceivers are based on Fiber Channel Links up to 14.025Gb/s data rate over multimode fiber, and they are compliant with PC-PI-4 Rev 7.0 and SFF-8472 Rev 10.1 and compatible with SFF-8432 and applicable portions of SFF-8431 Rev 1.3.

Product Features

- Up to 14.025 GBd bi-directional data links
- Compliant with SFF 8431 & SFF 8432
- Hot-pluggable SFP+ footprint
- 850nm VCSEL laser transmitter
- Duplex LC connector
- Built-in digital diagnostic functions
- Up to 100m on OM3 MMF
- Single power supply 3.3V
- RoHS Compliance
- Class 1 laser product complies with EN 60825-1
- Operating temperature range: 0°C to 70°C.

Applications

- 4.25G Fiber Channel
- 8.25G Fiber Channel
- 14.025G Fiber Channel

Ordering Information

Part Number	Description
QK724A-C	14.025G SFP+ 850nm LC Connectors 100m on MMF, with DOM function.

General Specifications

Parameter	Symbol	Min	Тур	Max	Unit		Remarks	
Data Rate	DR		14.025		GBd	IEEE	802.3ae	
Bit Error Rate	BER			10^{-12}				
Operating Temperature	T_{OP}	0		70	°C	Case	temperature	е
Storage Temperature	T_{STO}	- 40		85	°C	Ambi	ent tempera	ture
Supply Current	Is		180	220	mA	For interface	electrical	power
Input Voltage	V _{CC}	3	3.3	3.6	V			
Maximum Voltage	V_{MAX}	- 0.5		4	V	For interface	electrical	power

Optical Characteristics – Transmitter V_{CC} =3V to 3.6V, T_{C} =0C to 70C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Output Optical Power	P_{TX}	- 7.8		– 1	dBm	Class 1 Product
Optical Center Wavelength	λ_{C}	840	850	860	nm	
Extinction Ratio	ER	3.0	5.5		dB	
Spectral Width (RMS)	Δλ			0.65	nm	
Relative Intensity Noise	RIN			– 128	dB/Hz	
Transmitter Dispersion Penalty	TDP			4.3	dB	
Transmitter Jitter	According to IEEE 802.3ae requirement					
Launch Power of OFF Transmitter	$P_{ extit{OUT_OFF}}$			- 30	dBm	Average

Optical Characteristics – Receiver

 V_{CC} =3V to 3.6V, T_{C} =0°C to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Optical Center Wavelength	λc	840	850	860	nm	
Receiver Sensitivity (OMA)@ 4.25G	R _{X_SEN1}			– 12	dBm	Measured with a PRBS 2 ₇ -1 test pattern @ 4.25Gbps, BER≤10 ₋₁₂
Receiver Sensitivity (OMA)@ 8.5G	R_{X_SEN2}			– 11	dBm	Measured with a PRBS 2 ₇ -1 test pattern @ 8.5Gbps, BER≤10 ₋₁₂
Receiver Sensitivity (OMA)@ 14.025G	R_{X_SEN3}			– 10	dBm	Measured with a PRBS 2₃1 -1 test pattern @ 14.025Gbps, BER≤10-1₂
Maximum Input Power	P_{IN}	0.5			dBm	
Optical Return Loss	ORL			-12	dB	
LOS Assert	LOS_A	– 25			dBm	
LOS De-Assert	LOS_D			– 12.5	dBm	
LOS Hysteresis		0.5			dB	

Electrical Characteristics – Transmitter

 V_{CC} =3V to 3.6V, T_{C} =0°C to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Input differential impedance	R _{IN}		100		Ω	Non condensing
Single ended data input swing	V_{IN_PP}	90		800	mV	-
Transmit disable voltage	V_D	2		V _{CC}	V	
Transmit enable voltage	V_{EN}	V _{EE}		V _{EE} +0.	V	
_				8		

Electrical Characteristics – Receiver

 V_{CC} =3V to 3.6V, T_{C} =0°C to 70°C

Parameter	Symbol	Min	Тур	Max	Unit	Remarks
Single ended data output swing	V_{OUT_PP}	170	300	400	mV	
LOS Fault	V_{LOS_Fault}	2		V _{CC_HO}	V	
				ST		
LOS Normal	V_{LOS_normal}	V _{EE}		V _{EE} +0.	V	
				5		

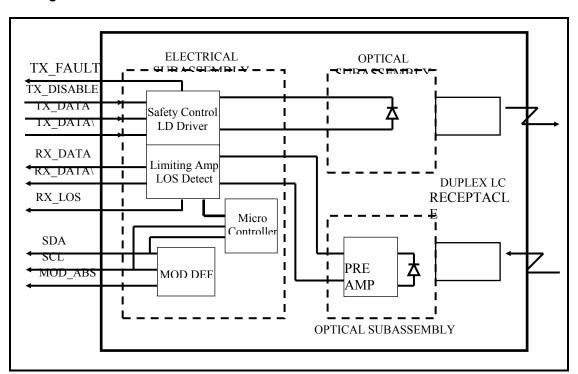
Digital Diagnostic Functions

QK724A-C support the 2-wire serial communication protocol as defined in the SFF 8472. Digital

diagnostic information are accessible over the 2-wire interface at the address 0xA2. Digital Diagnostics for QK724A-C are internally calibrated by default. A micro controller unit inside the transceiver gathers the monitoring information and reports the status of transceiver.

Transceiver Temperature, internally measured, represented as a 16 bit signed twos complement value in increments of 1/256 degrees Celsius, Temperature accuracy is better than ±3 degrees Celsius over specified operating temperature and voltage.

Transceiver Supply Power, internally measured, represented as a 16 bit unsigned integer with the voltage defined as the full 16 bit value (0-65535) with LSB equal to 100 μ Volt, yielding a total range of 0 to +6.55 Volts.


Transceiver TX bias current, internally measured, represented as a 16 bit unsigned integer with the current defined as the full 16 bit value (0 - 65535) with LSB equal to 2 μ A, yielding a total range of 0 to 131mA. Accuracy is better than $\pm 10\%$ over specified operating temperature and voltage.

Transceiver TX output power, internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit value (0-65535) with LSB equal to 0.1 μ W. Data is assumed to be based on measurement of laser monitor photodiode current. Accuracy is better than ± 3 dB over specified temperature and voltage. Data is not valid when the transmitter is disabled.

Transceiver RX received optical power, internally measured, represented as a 16 bit unsigned integer with the power defined as the full 16 bit 35 value (0-65535) with LSB equal to 0.1 μ W. Accuracy is better than ± 3 dB over specified temperature and voltage.

Parameter	Symbol	Accuracy	Units	Repor	t Range	Unit	Remarks
		Inte	ernal Cali	bration			
Temperature	T_{MON}	±3	°C	- 5	75	°C	
Voltage	V_{MON}	±0.1	V	2.9	3.7	V	
Bias Current	I _{MON}	±10	%	1	15	mA	
Tx Power	P _{MON}	±3	dB	– 10	0	dBm	
Rx Power	P _{MON}	±3	dB	- 20	0	dBm	

Block Diagram of Transceiver

Transmitter Section

The VCSEL driver accept differential input data and provide bias and modulation currents for driving a laser. An automatic power-control (APC) feedback loop is incorporated to maintain a constant average optical power. 850 nm VCSEL in an eye safe optical subassembly (OSA) mates to the fiber cable.

TX_DISABLE

The TX_DISABLE signal is high (TTL logic "1") to turn off the laser output. The laser will turn on within 1ms when TX_DISABLE is low (TTL logic "0").

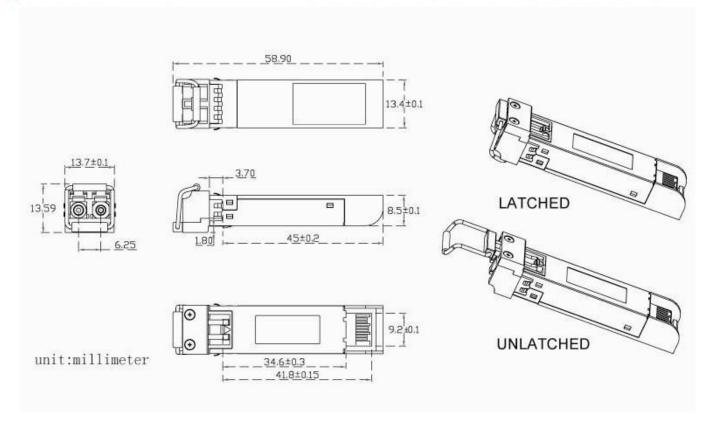
TX FAULT

When the TX_FAULT signal is high, output indicates a laser fault of some kind. Low indicates normal operation.

Receiver Section

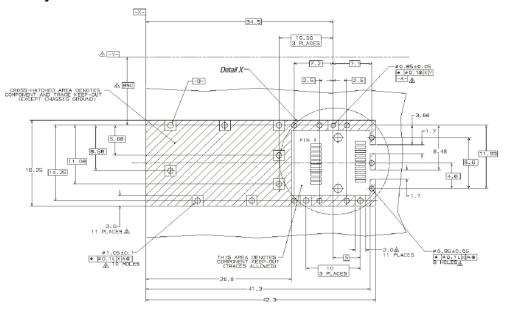
The receiver utilizes a PIN detector integrated with a trans-impedance preamplifier in an OSA. This OSA is connected to a Limiting Amplifier which providing post-amplification quantization, and optical signal detection. The limiting Amplifier is AC-coupled to the transimpedance amplifier, with internal 100Ω differential termination.

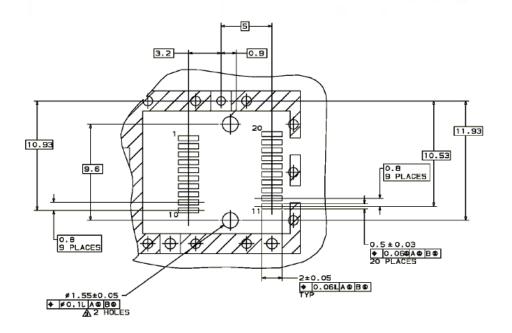
Receive Loss (RX_LOS)


The RX_LOS is high (logic "1") when there is no incoming light from the companion transceiver. This signal is normally used by the system for the diagnostic purpose. The signal is operated in TTL level.

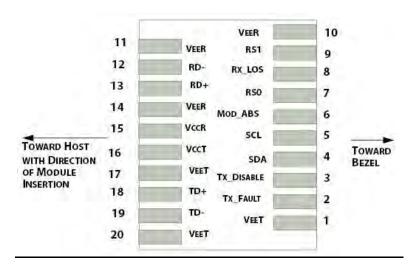
Controller Section

The micro controller unit monitors the operation information of LD driver and Limiting Amplifier. And report these status to the customer.

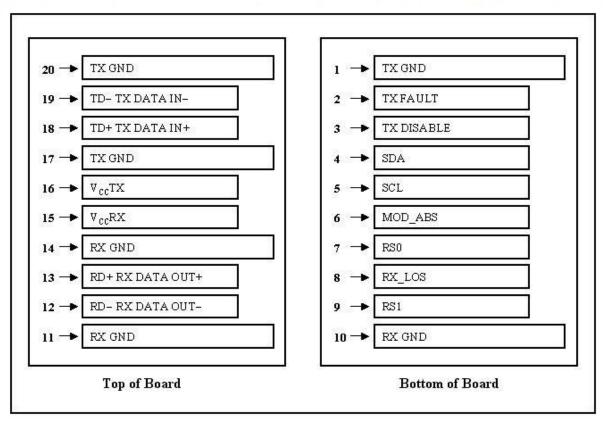

Dimensions


ALL DIMENSIONS ARE ±0.2mm UNLESS OTHERWISE SPECIFIED UNIT: mm

PCB Layout Recommendation



- /Datum and Basic Dimension Established by Customer
- Rads and Vias are Chassis Ground, 11 Places
- AThrough Holes are Unplated



Electrical Pad Layout

Pin Assignment

PIN#	Symbol	Description	Remarks
1	V _{EET}	Transmitter ground (common with receiver ground)	Circuit ground is isolated from chassis ground
2	T_{FAULT}	Transmitter Fault.	
3	T_{DIS}	Transmitter Disable. Laser output disable on high or open	Disabled: T _{DIS} >2V or open Enabled: T _{DIS} <0.8V
4	SDA	Data line for serial ID	Should Be pulled up with
5	SCL	Clock line for serial ID	4.7k – 10k ohm on
6	MOD_ABS	Module Absent. Grounded within the module	board to a voltage between 2V and 3.6V
7	RS0	No connection required	
8	LOS	Loss of Signal indication. Logic 0 indicates normal operation	LOS is open collector output
9	RS1	No connection required	<u>. </u>
10	V _{EER}	Receiver ground (common with transmitter ground)	Circuit ground is isolated
11	V _{EER}	Receiver ground (common with transmitter ground)	from chassis ground
12	RD-	Receiver Inverted DATA out. AC coupled	
13	RD+	Receiver Non-inverted DATA out. AC coupled	

14	V_{EER}	Receiver ground (common with transmitter ground is isolated from chassis ground
15	V_{CCR}	Receiver power supply
16	V_{CCT}	Transmitter power supply
17	V_{EET}	Transmitter ground (common with receiver connected to chassis ground)
18	TD+	Transmitter Non-Inverted DATA in. AC coupled
19	TD-	Transmitter Inverted DATA in. AC coupled
20	V_{EET}	Transmitter ground (common with receiver ground) Circuit ground is connected to chassis ground

References

- 1. IEEE standard 802.3ae. IEEE Standard Department, 2005.
- 2. Enhanced 8.5 and 10 Gigabit Small Form Factor Pluggable Module "SFP+" SFF-8431
- 3. Digital Diagnostics Monitoring Interface for Optical Transceivers SFF-8472.