Multifunctional three-phase monitoring relays CM-MPS CM-MPS.11, CM-MPS.21, CM-MPS.31 and CM-MPS.41

The three-phase monitoring relays CM-MPS.x1 monitor the phase parameters phase sequence, phase failure, over- and undervoltage as well as phase unbalance.

All devices are available with two different terminal versions. You can choose between the proven screw connection technology (double-chamber cage connection terminals) and the completely tool-free Easy Connect Technology (push-in terminals).

Characteristics

- Monitoring of three-phase mains for phase sequence (can be switched off), phase failure, over- and undervoltage as well as phase unbalance
- TRMS measuring principle
- Interrupted neutral monitoring (CM-MPS.11 and CM-MPS.21)
- CM-MPS.11 and CM-MPS.21 can also be used to monitor single-phase mains
- Threshold values for over- and undervoltage as well as phase unbalance are adjustable as absolute values
- Tripping delay T_{ν} can be adjusted or switched off by means of a logarithmic scale (0 s; 0.1-30 s)
- ON-delayed or OFF-delayed tripping delay selectable
- Powered by the measuring circuit
- Precise adjustment by front-face operating controls
- Screw connection technology or Easy Connect Technology available
- Housing material for highest fire protection classification
 UL 94 V-0
- Tool-free mounting on DIN rail as well as demounting
- 2 c/o (SPDT) contacts
- 22.5 mm (0.89 in) width
- 3 LEDs for the indication of operational states

Approvals

🗓 ul 508, CAN/CSA C22.2 No.14

(I) GL

PG

GOST

CB CB scheme

(CCC)

RMRS

Marks

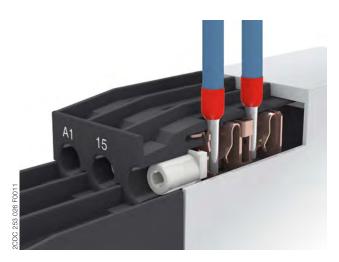
CE CE

C-Tick

Order data

Three-phase monitoring relays

Туре	Rated control supply voltage = measuring voltage	Interrupted neutral monitoring	Connection technology	Order code
CM-MPS.11P	3 x 90-170 V AC	yes	Push-in terminals	1SVR 740 885 R1300
CM-MPS.11S		yes	Screw terminals	1SVR 730 885 R1300
CM-MPS.21P	3 x 180-280 V AC	yes	Push-in terminals	1SVR 740 885 R3300
CM-MPS.21S		yes	Screw terminals	1SVR 730 885 R3300
CM-MPS.31P	3 x 160-300 V AC	no	Push-in terminals	1SVR 740 884 R1300
CM-MPS.31S		no	Screw terminals	1SVR 730 884 R1300
CM-MPS.41P	3 x 300-500 V AC	no	Push-in terminals	1SVR 740 884 R3300
CM-MPS.41S		no	Screw terminals	1SVR 730 884 R3300

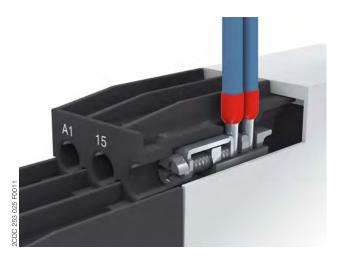

Accessories

Туре	Description	Order code
ADP.01	Adapter for screw mounting	1SVR 430 029 R0100
MAR.12	Marker label for devices with DIP switches	1SVR 730 006 R0000
COV.11	Sealable transparent cover	1SVR 730 005 R0100

Connection technology

Maintenance free Easy Connect Technology with push-in terminals

Type designation CM-xxS.yyP



Push-in terminals

- Tool-free connection of rigid and flexible wires with wire end ferrule according to DIN 46228-1-A, DIN 46228-4-E
 - Wire size: 2 x 0.5-1.5 mm², (2 x 20 16 AWG)
- Easy connection of flexible wires without wire end ferrule by opening the terminals
- No retightening necessary
- One operation lever for opening both connection terminals
- For triggering the lever and disconnecting of wires you can use the same tool (Screwdriver according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 ø 4.5 mm (0.177 in))
- Constant spring force on terminal point independent of the applied wire type, wire size or ambient conditions (e. g. vibrations or temperature changes)
- Opening for testing the electrical contacting
- Gas-tight

Approved screw connection technology with double-chamber cage connection terminals

Type designation CM-xxS.yyS

Double-chamber cage connection terminals

- Terminal spaces for different wire sizes: fine-strand with/without wire end ferrule: 1 x 0.5-2.5 mm² (2 x 20 14 AWG), 2 x 0.5-1.5 mm² (2 x 20 16 AWG) rigid:
 - 1 x 0.5-4 mm² (1 x 20 12 AWG), 2 x 0.5-2.5 mm² (2 x 20 - 14 AWG)
- One screw for opening and closing of both cages
- Pozidrive screws for pan- or crosshead screwdrivers according to DIN ISO 2380-1 Form A 0.8 x 4 mm (0.0315 x 0.157 in), DIN ISO 8764-1 PZ1 Ø 4.5 mm (0.177 in)

Both the Easy Connect Technology with push-in terminals and screw connection technology with double-chamber cage connection terminals have the same connection geometry as well as terminal position.

Functions

Operating controls

- 1 Adjustment of the hysteresis >U for overvoltage
- 2 Adjustment of the threshold value <U for undervoltage
- 3 Indication of operational states

R/T: red LED - Relay status / timing

F1: yellow LED - Fault message

F2: yellow LED - Fault message

- 4 Adjustment of the threshold value Asym. for phase unbalance
- 5 Adjustment of the tripping delay T_v
- 6 DIP switches (see DIP switch functions)

Application

The three-phase monitoring relays CM-MPS.x1 are designed for use in three-phase mains for monitoring the phase parameters phase sequence, phase failure, over- and undervoltage as well as phase unbalance. The CM-MPS.11 and CM-MPS.21 also monitor the neutral for interruption and are suitable for monitoring single-phase mains.

The CM-MPS.x1 provide an adjustable tripping delay and work and according to the closed-circuit principle.

Operating mode

The CM-MPS.x1 have 2 c/o (SPDT) contacts and are available for 3-wire AC systems (CM-MPS.31, CM-MPS.41) and 4-wire AC systems (CM-MPS.11, CM-MPS.21).

The units are adjusted with front-face operating controls. The selection of ON- or OFF- delay and phase sequence monitoring activated or phase sequence monitoring deactivated or phase with DIP switches. Potentiometers, with direct reading scale, allow the adjustment of the threshold values for overvoltage (>U), undervoltage (<U), phase unbalance (Asym %) and the tripping delay T_v . The tripping delay T_v is adjustable over a range of instantaneous to a 30 s delay. Timing is displayed by a flashing yellow LED labelled R/T.

For monitoring single-phase mains, all three external conductors (L1, L2, L3) have to be jumpered and connected as one single conductor. Phase sequence monitoring has to be deactivated and the threshold value for phase unbalance has to be set to the maximum (25 %).

Adjustment potentiometer

Threshold values

By means of three separate potentiometers with direct reading scales, the threshold values for over- and undervoltage as well as for phase unbalance can be adjusted within the measuring range.

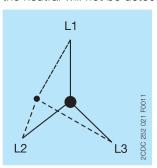
	Measuring range for overvoltage	Measuring range for undervoltage	Measuring range for phase unbalance
CM-MPS.11	3 x 120-170 V AC	3 x 90-130 V AC	
CM-MPS.21	3 x 240-280 V AC	3 x 180-220 V AC	
CM-MPS.31	3 x 220-300 V AC	3 x 160-230 V AC	2-25 % of average of phase voltages
CM-MPS.41	3 x 420-500 V AC	3 x 300-380 V AC	

Tripping delay T_v

The tripping delay T_v can be adjusted within a range of 0.1 to 30 s by means of a potentiometer with logarithmic scale. By turning to the left stop, the tripping delay can be switched off.

Indication of operational states

LEDs, status information and fault messages


Operational state	R/T: LED yellow	F1: LED red	F2: LED red
Control supply voltage applied, output relay energized	<u></u>	-	-
Tripping delay T _v active	ПП	-	-
Phase failure	-	Г <u></u>	пп
Phase sequence	-	- \tag{\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}	
Overvoltage	-		-
Undervoltage	-	-	Г
Phase unbalance	-		Г
Interruption of the neutral	-		пп
Adjustment error 1)	пл	ПП	ПП

¹⁾ Overlapping of the threshold values: The threshold value for overvoltage is set to a smaller value than the threshold value for undervoltage.

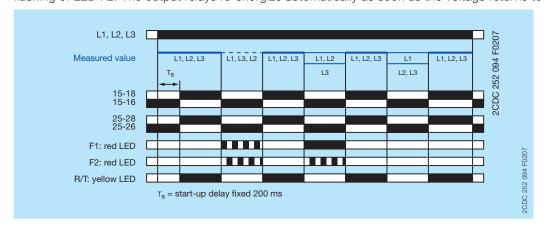
Function descriptions / diagrams

Interrupted neutral monitoring

The interruption of the neutral in the main to be monitored is detected by means of phase unbalance evaluation. If the star point is displaced by asymmetrical load in the three-phase main, an interrupted neutral will be detected. Determined by the system, in case of unloaded neutral, i.e. symmetrical load between all three phases, it may happen that an interruption of the neutral will not be detected.

Phase sequence and phase failure monitoring

Applying control supply voltage begins the fixed start-up delay T_s . When T_s is complete and all phases are present with correct voltage, the output relays energize and the yellow LED R/T is on.

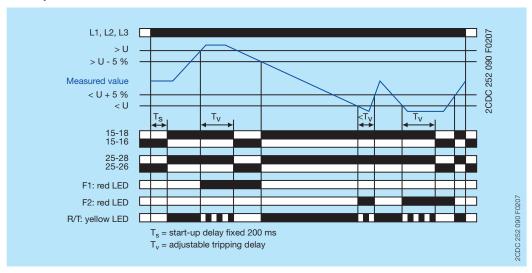

Phase sequence monitoring:

If phase sequence monitoring is activated (DIP switch 2 = OFF), the output relays de-energize as soon as a phase sequence error occurs. The fault is displayed by alternated flashing of the LEDs F1 and F2. The output relays re-energize automatically as soon as the phase sequence is correct again.

If phase sequence monitoring is deactivated (DIP switch 2 = ON), a phase sequence error will not cause tripping of the relays. The output relays do not change state and the LEDs F1 and F2 don't flash.

Phase failure monitoring:

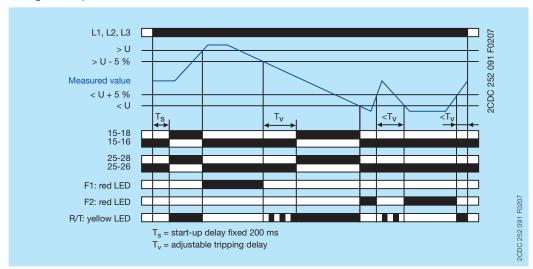
The output relays de-energize instantaneously if a phase failure occurs. The fault is indicated by lightning of LED F1 and flashing of LED F2. The output relays re-energize automatically as soon as the voltage returns to the tolerance range.


Over- and undervoltage monitoring

Applying control supply voltage begins the fixed start-up delay T_s . When T_s is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize and the yellow LED R/T is on.

Type of tripping delay = ON-delay ⊠

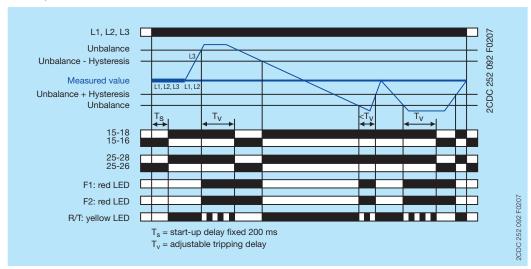
If the voltage to be monitored exceeds or falls below the set threshold value, the output relays de-energize after the set tripping delay T_v is complete. The LED R/T flashes during timing and turns off as soon as the output relays de-energize.


The output relays re-energize automatically as soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %. The LED R/T is on.

Type of tripping delay = OFF-delay ■

If the voltage to be monitored exceeds or falls below the set threshold value, the output relays de-energize instantaneously and the LED R/T turns off.

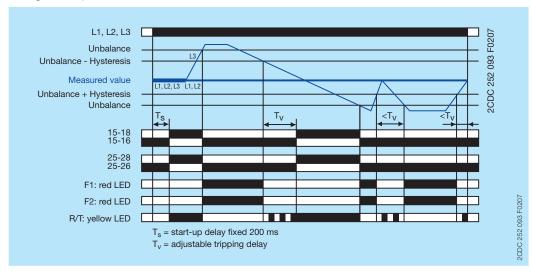
As soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 5 %, the output relays reenergize automatically after the set tripping delay T_v is complete. The LED R/T flashes during timing and turns steady when timing is complete.

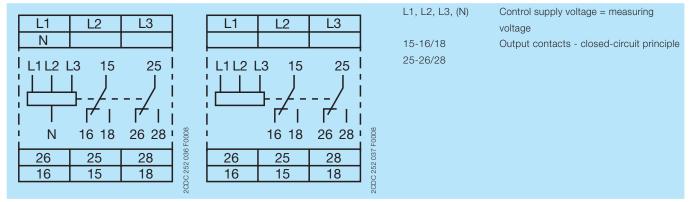

Phase unbalance monitoring

Applying control supply voltage begins the fixed start-up delay T_s . When T_s is complete and all phases are present with correct voltage and with correct phase sequence, the output relays energize and the yellow LED R/T is on.

Type of tripping delay = ON-delay ⊠

If the voltage to be monitored exceeds or falls below the set phase unbalance threshold value, the output relays de-energize after the set tripping delay T_v is complete. The LED R/T flashes during timing and turns off as soon as the output relays de-energize.


The output relays re-energize automatically as soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 20 %. The LED R/T is on.


Type of tripping delay = OFF-delay

If the voltage to be monitored exceeds or falls below the set phase unbalance threshold value, the output relays deenergize instantaneously and the LED R/T turns off.

As soon as the voltage returns to the tolerance range, taking into account a fixed hysteresis of 20 %, the output relays reenergize automatically after the set tripping delay T_v is complete. The LED R/T flashes during timing and turns steady when timing is complete.

Electrical connection

Connection diagram CM-MPS.11 and CM-MPS.21 Connection diagram CM-MPS.31 and CM-MPS.41

DIP switches

Position ON †	2	1	8000	1 Timing function	ON	ON-delayed	In case of a fault, the de-energizing of the output relays and the respective fault message are suppressed for the adjusted tripping delay $T_{\rm v}$.
OFF			2CDC 252 040 F0		OFF	OFF-delayed	In case of a fault, the output relays de-energize instantaneously and a fault message is displayed and stored for the duration of the adjusted tripping delay T_{ν} . Thereby, also momentary undervoltage conditions are recognized.
				2 Phase sequence monitoring	ON	deactivated	Phase sequence errors will not cause tripping of the relays.
					OFF	activated	The output relays de-energize as soon as a phase sequence error occurs. The output relays re-energize automatically as soon as the phase sequence is correct again.

Technical data

Data at T_a = 25 °C and rated values, unless otherwise indicated

Input circuit

Туре		CM-MPS.11	CM-MPS.21	CM-MPS.31	CM-MPS.41		
Supply circuit = measu	ring circuit	L1, L2	, L3, N	L1, L	.2, L3		
Rated control supply volt	age U _s = measuring voltage	3 x 90-170 V AC 3 x 180-280 V AC 3 x 160-300 V AC 3 x 300-500 V AC					
Rated control supply volt	age U _s tolerance	-15+10 %					
Rated frequency		50/60 Hz					
Frequency range		45-65 Hz					
Typical current / power consumption		25 mA / 10 VA	25 mA / 18 VA	25 mA / 10 VA	25 mA / 18 VA		
		(115 V AC)	(230 V AC)	(230 V AC)	(400 V AC)		
Measuring circuit		L1, L2	, L3, N	L1, L	.2, L3		
Monitoring functions Phase failure		•	•	•			
	Phase sequence	can be switched off	can be switched off	can be switched off	can be switched off		
	Automatic phase sequence correction	-	-	-	-		
	Over-/undervoltage	•	•	•	•		
	Phase unbalance	•	•	•	•		
	Interrupted neutral	•	•	-	-		
Measuring range	Overvoltage	3 x 120-170 V AC	3 x 240-280 V AC	3 x 220-300 V AC	3 x 420-500 V AC		
	Undervoltage	3 x 90-130 V AC	3 x 180-220 V AC	3 x 160-230 V AC	3 x 300-380 V AC		
	Phase unbalance	2-25 % of average of phase voltages					
Thresholds	Overvoltage	adjustable within measuring range					
	Undervoltage	adjustable within n	neasuring range				
	Phase unbalance (switch-off value)	adjustable within measuring range					
Hysteresis related to	Over-/undervoltage	fixed 5 %					
the threshold value	Phase unbalance	fixed 20 %					
Rated frequency of the m	neasuring signal	50/60 Hz					
Frequency range of the n	neasuring signal	45-65 Hz					
Maximum measuring cyc	le time	100 ms					
Accuracy within the rated	d control supply voltage tolerance	$\Delta U \leq 0.5 \%$					
Accuracy within the temper	ature range	$\Delta U \leq 0.06 \% / °C$					
Measuring method		True RMS					
Timing circuit							
Start-up delay T _s		fixed 200 ms					
Tripping delay T _v		ON- or OFF-delay					
		0 s; 0.1-30 s adjustable					
Repeat accuracy (consta	nt parameters)	< ±0.2 %					
Accuracy within the rated	d control supply voltage tolerance	Δt ≤ 0.5 %					
Accuracy within the temper	ature range	$\Delta t \leq 0.06 \% / °C$					

User interface

Indication of operational states		
Relay status / timing	R/T	yellow LED
Fault message	F1	red LED
Fault message		red LED

Details see table ,LEDs, status information and fault messages' on page 5 and ,Function descriptions / diagrams' on page 5.

Output circuits

Kind of output	15-16/18	relay, 1st c/o (SPDT) contact	
	25-26/28	relay, 2nd c/o (SPDT) contact	
		1 x 2 (SPDT) contacts	
Operating principle		closed-circuit principle 1)	
Contact material		AgNi alloy, Cd free	
Rated operational voltage	U _e (IEC/EN 60947-1)	250 V	
Minimum switching voltag	e / Minimum switching current	24 V / 10 mA	
Maximum switching voltage	ge / Maximum switching current	see load limit curves	
Rated operational current	I _e AC12 (resistive) at 230 V	4 A	
(IEC/EN 60947-5-1)	AC15 (inductive) at 230 V	3 A	
	DC12 (resistive) at 24 V	4 A	
	DC13 (inductive) at 24 V	2 A	
AC rating (UL 508)	Utilization category (Control Circuit Rating Code)	В 300	
	max. rated operational voltage	300 V AC	
	max. continuous thermal current at B 300		
	max. making/breaking apparent power at B 300	3600/360 VA	
Mechanical lifetime		30 x 10 ⁶ switching cycles	
Electrical lifetime	AC12, 230 V, 4 A	0.1 x 10 ⁶ switching cycles	
Maximum fuse rating to a	chieve n/c contact	6 A fast-acting	
short-circuit protection	n/o contact	10 A fast-acting	

General data

MTBF			on request			
Duty time			100 %			
Dimensions (W x H x D)	Dimensions (W x H x D) product dimensions			3.7 mm (0.89 x 3.37	x 4.08 in)	
	pacl	kaging dimensions	97 x 109 x 30 mm (3.82 x 4.29 x 1.18		8 in)	
Weight			Screw connecti	on technology	Easy Connect Tee	chnology (push-in
	net weight	CM-MPS.11	0.148 kg (0.326	lb)	0.137 kg (0.302 ll	o)
		CM-MPS.21	0.146 kg (0.322	lb)	0.135 kg (0.298 ll	o)
		CM-MPS.31	0.142 kg (0.313 lb)		0.133 kg (0.293 ll	o)
		CM-MPS.41	0.140 kg (0.309 lb)		0.132 kg 0.291 lb)	
	gross weight	CM-MPS.11	0.173 kg (0.381 lb)		0.162 kg (0.357 lb)	
		CM-MPS.21	0.171 kg (0.377 lb)		0.160 kg (0.353 lb)	
		CM-MPS.31	0.167 kg (0.368 lb)		0.158 kg (0.348 lb)	
		CM-MPS.41	0.165 kg (0.364 lb)		0.157 kg (0.346 lb)	
Mounting			DIN rail (IEC/EN 60715), snap-on mounting without any tool			
Mounting position			any			
Minimum distance to other	units		CM-MPS.11	CM-MPS.21	CM-MPS.31	CM-MPS.41
		horizontal	10 mm (0.39 in) in case of continuous voltage of			
			> 120 V	> 240 V	> 220 V	> 400 V
Material of housing			UL 94 V-0			
Degree of protection housing		IP50				
	•••••	terminals	IP20	•••••		••••••

¹⁾ Closed-circuit principle: Output relay(s) de-energize(s) if measured value exceeds or falls below the adjusted threshold value.

Electrical connection

		Screw connection technology	Easy Connect Technology (push-in)
Wire size	fine-strand with(out)	1 x 0.5-2.5 mm ²	2 x 0.5-1.5 mm ²
	wire end ferrule	(1 x 20-14 AWG)	(2 x 20-16 AWG)
		2 x 0.5-1.5 mm ²	
		(2 x 20-16 AWG)	
	rigid	1 x 0.5-4 mm ²	2 x 0.5-1.5 mm ²
		(1 x 20-12 AWG)	(2 x 20-16 AWG)
		2 x 0.5-2.5 mm ²	
		(2 x 20-14 AWG)	
Stripping length		8 mm (0.32 in)	
Tightening torque		0.6 - 0.8 Nm	-
		(5.31 - 7.08 lb.in)	

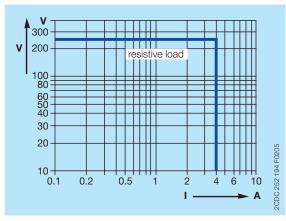
Environmental data

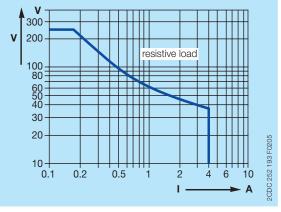
Ambient temperature ranges	operation	-25+60 °C
	storage	-40+85 °C
Damp heat, cyclic (IEC/EN 60068-2-30)		55 °C, 6 cycles
Climatic category		3K3
Vibration, sinusoidal (IEC/EN 60255-21-1)		Class 2
Shock (IEC/EN 60255-21-2)		Class 2

Isolation data

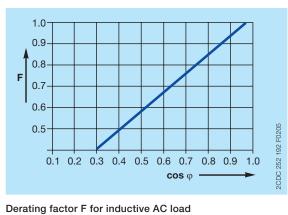
Туре		CM-MPS.11	CM-MPS.21	CM-MPS.31	CM-MPS.41
Rated insulation	input circuit / output circuit	600 V			
voltage U _i	output circuit 1 / output circuit 2	300 V	•	•	•
Rated impulse withstand voltage U _{imp} input circuit		6 kV, 1.2/50 μs	•	•	•
(IEC/EN 60664)	4 kV, 1.2/50 μs				
Test voltage between all isolated cir	2.5 kV, 50 Hz, 1 s				
Basic insulation	input circuit / output circuit		•	•	. •
Protective separation	input circuit /		•		. •••••••••••
(IEC/EN 61140, EN 50178)	output circuit	yes		-	
Pollution degree (IEC/EN 60664, IEC/EN 60255-5)		3			
Overvoltage category (IEC/EN 6066	III	•			

Standards

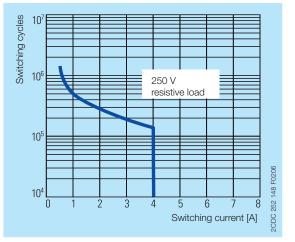

Product standard	IEC/EN 60255-6, EN 50178
Low Voltage Directive	2006/95/EC
EMC directive	2004/108/EC
RoHS directive	2002/95/EC


Electromagnetic compatibility

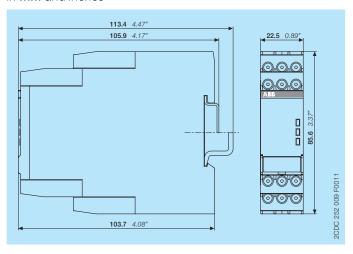
Туре		CM-MPS.11	CM-MPS.21	CM-MPS.31	CM-MPS.41
Interference immunity to		IEC/EN 61000-6-1, IEC/EN 61000-6-2			
electrostatic discharge	IEC/EN 61000-4-2	Level 3 (6 kV / 8 kV)			
radiated, radio-frequency, electromagnetic field	IEC/EN 61000-4-3				
electrical fast transient / burst	IEC/EN 61000-4-4	Level 3 (2 kV / 2 kHz)			
surge	IEC/EN 61000-4-5			· · · · · · · · · · · · · · · · · · ·	
conducted disturbances, induced by radio-frequency fields	IEC/EN 61000-4-6	Level 3 (10 V)			
harmonics and interharmonics	IEC/EN 61000-4-13	Class 3			
nterference emission		IEC/EN 61000-6	-3, IEC/EN 61000-	6-4	•••••
high-frequency radiated	IEC/CISPR 22, EN 55022	Class B			
high-frequency conducted	IEC/CISPR 22, EN 55022				


Technical diagrams

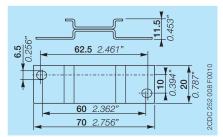
Load limit curves



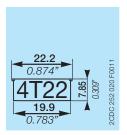
AC load (resistive)


DC load (resistive)

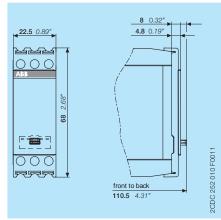
Contact lifetime


Dimensions

in mm and inches



Accessories


in mm and inches

ADP.01 - Adapter for screw mounting

MAR.12 - Marker label for devices with DIP switches

COV.11 - Sealable transparent cover

Further documentation

Document title	Document type	Document number
Electronic products and relays	Technical catalogue	2CDC 110 004 C02xx
CM-MPS.11, CM-MPS.21, CM-MPS.31,	Instruction manual	1SVC 730 520 M0000
CM-MPS.41		

You can find the documentation on the internet at www.abb.com/lowvoltage -> Control Products -> Electronic Relays and Controls -> Three Phase Monitors.

Document number 2CDC 112 175 D0201 (11.2012)

Contact us

ABB STOTZ-KONTAKT GmbH

P. O. Box 10 16 80

69006 Heidelberg, Germany Phone: +49 (0) 6221 7 01-0 Fax: +49 (0) 6221 7 01-13 25 E-mail: info.desto@de.abb.com

You can find the address of your local sales organisation on the ABB home page http://www.abb.com/contacts -> Low Voltage Products and Systems

Note:

We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB AG does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB AG.

Copyright© 2012 ABB All rights reserved