

SFP, Duplex LC Connector, 850nm VCSEL for Multimode Fiber, RoHS Compliant

Applications

- Gigabit Ethernet Links
- Fiber Channel Links at 1.06 Gbps
- High Speed Backplane Interconnects
- Switched Backbones

Features

- 850nm VCSEL
- Data Rate: 1.25Gbps, NRZ
- Single +3.3V Power Supply
- · RoHS Compliant and Lead-free
- AC/AC Differential Electrical Interface
- Compliant with Multi-Source Agreement (MSA) Small Form Factor Pluggable (SFP)
- Duplex LC Connector
- Compliance with specifications for IEEE-802.3z Gigabit Ethernet at 1.25 Gbps
- Compliance with ANSI specifications for Fiber Channel applications at 1.06 Gbps
- Eye Safety
 Designed to meet Laser Class 1, complies with EN60825-1

Description

The SFP-M from AAXEON is the high performance and cost-effective module for serial optical data communication applications specified for multimode of 1.25 Gb/s. It operates on +3.3V power. The module is intended for multimode fiber, operates at a nominal wavelength of 850nm, and complies with Multi-Source Agreement (MSA) Small Form Factor Pluggable (SFP). Each module consists of a transmitter optical subassembly, a receiver optical subassembly, and an electrical subassembly. All are housed in a metal package and the combination produces a reliable component.

The module is a duplex LC connector transceiver designed for use in Gigabit Ethernet applications and to provide IEEE-802.3z compliant link for 1.25Gb/s short reach applications. The characteristics are performed in accordance with Telcordia Specification GR-468-CORE.

EMC

Most equipment utilizing high-speed transceivers will be required to meet the following requirements:

- 1) FCC in the United States
- 2) CENELEC EN55022 (CISPR 22) in Europe

To assist the customer in managing the overall equipment EMC performance, the transceivers have been designed to satisfy FCC class B limits and provide good immunity to radio-frequency electromagnetic fields.

Eye Safety

The transceivers have been designed to meet Class 1 eye safety and comply with EN 60825-1.

Product Information

Model Number	Operating Voltage & SD Output	Wavelength	Output Power	Sensitivity	Distance
SFP-M	2 21/ TTL AC/AC	050 nm	-9.5 ~ -4 dBm	<-17 dBm	550 m(50/125µm)
SFF-IVI	3.3V TTL AC/AC 850 nm -9.5 ~ -4 dBm		<u>≥</u> -17 ubiii	275 m(62.5/125µm)	

ABSOLUTE MAX RATINGS

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTE
Storage Temperature	Ts	-40	85	°C	
Supply Voltage	V _{cc}	0	6	V	
Supply Current	I _S		240	mA	

OPERATING CONDITIONS

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
Case Operating Temperature	T _A	0		70	°C	
Supply Voltage	V _{CC}	3.1		3.5	V	
Data Input Voltage Swing	V_{ID}	400		1660	mV	

ELECTRICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	MAX	UNIT	NOTE
Transmitter					
Transmitter Supply Current	I_{CCT}		140	mA	
Tx_ Disable Input Voltage - Low	V _{IL}	0	0.8	V	
Tx_ Disable Input Voltage - High	V _{IH}	2.0	Vcc	V	
Tx_ Fault Output Voltage - Low	V_{OL}	0	0.8	V	
Tx_ Fault Output Voltage - High	V_{OH}	2.0	Vcc	V	
Receiver					
Receiver Supply Current	I _{CCR}		100	mA	
Receiver Data Output Differential Voltage	V_{OD}	0.4	1.3	V	
Rx_LOS Output Voltage - Low	V _{OL}	0	0.8	V	
Rx_LOS Output Voltage - High	V _{OH}	2.0	Vcc	V	
MOD_DEF (1), MOD_DEF (2) - Low	V _{IL}	-0.6	Vcc × 0.3	V	
MOD_DEF (1), MOD_DEF (2) - High	V _{IH}	Vcc × 0.7	Vcc + 0.5	V	

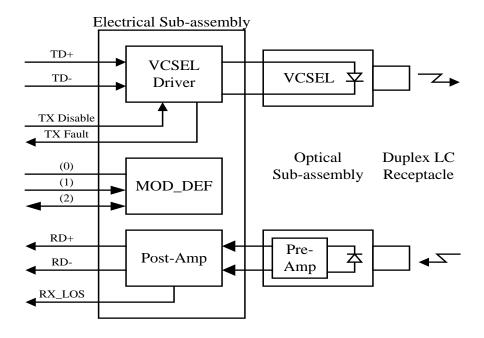
TRANSMITTER ELECTRO-OPTICAL CHARACTERISTICS

PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Optical Output Power	Po	-9.5		-4	dBm	1
Extinction Ratio	ER	9			dB	
Center Wavelength	λ_{c}	830	850	860	nm	
Spectral Width (RMS)	Δλ			0.85	nm	
RIN	RIN			-117	dB/Hz	
Coupled Power Ratio	CPR	9			dB	2
Optical Rise time (20%-80%)	t _r			260	ps	3
Optical Fall time (20%-80%)	t _f			260	ps	3
Output Eye		Comp	oliant with IEE	E802.3z/D5	.0	

RECEIVER ELECTRO-OPTICAL CHARACTERISTICS

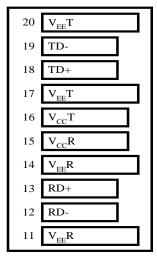
PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
Maximum Input Optical Power	P_{max}	-3			dBm	4
Minimum Input Optical Power	P_{min}			-17	dBm	4
Operating Wavelength	λ	770		860	nm	
Optical Return Loss	ORL	12			dB	
Receiver Electrical 3dB Upper Cutoff Frequency				1500	MHz	
LOS of Signal - Asserted	P_A	-30			dBm	
LOS of Signal - Deasserted	P_{D}		•	-17	dBm	
Loss of Signal -Hysterisis	$P_D - P_A$	0.5			dB	

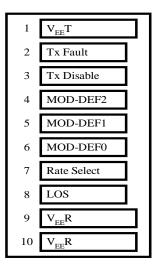
Notes:


- 1.Measured average power coupled into $62.5/125\mu m$, 0.275 NA or $50/125\mu m$, 0.2 NA graded index multimode Fiber.
- 2.CPR is measured in accordance with EIA/TIA-526-14A as referenced in IEEE 802.3 section 38.6.10.
- 3. These are 20-80% values.
- 4. Measured with 2⁷-1 PRBS at BER<10⁻¹²

TIMING CHARACTERISTICS

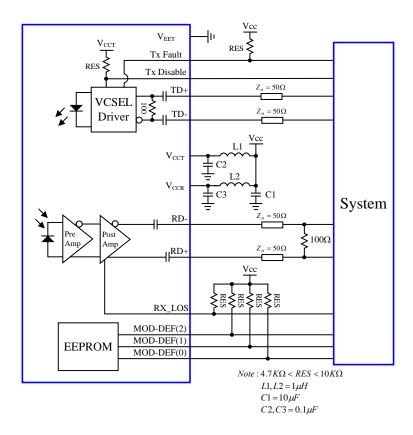
TIMING STARAGIERIOTICS						
PARAMETER	SYMBOL	MIN	TYP.	MAX	UNIT	NOTE
TX_DISABLE Assert Time	t_off			10	μs	
TX_DISABLE Negate Time	t_on			1	ms	
Time to initialize, include reset of TX_FAULT	t_init			300	ms	-
TX_FAULT from fault to assertion	t_fault			100	μs	
TX_DISABLE time to start reset	t_reset	10			μs	
Receiver Loss of Signal Assert Time (off to on)	t_{A,RX_LOS}			100	μs	
Receiver Loss of Signal Assert Time (on to off)	t _{D,RX_LOS}			100	μs	




BLOCK DIAGRAM OF TRANSCEIVER

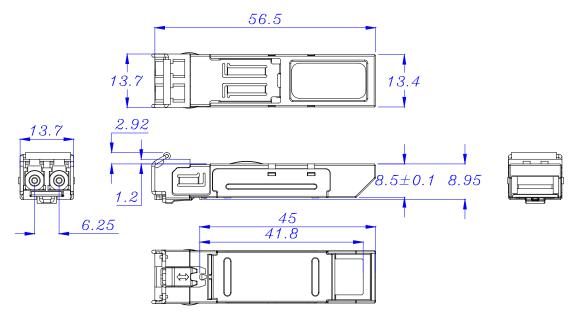
PIN OUT DIAGRAM OF TRANSCEIVER

Top of Board


Buttom of Board (As Viewed through Top of Board

PIN OUT TABLE

00.	· · · · — — —	
Pin	Symbol	Functional Description
1	VeeT	Transmitter Ground
2	TX Fault	Transmitter Fault Indication
3	TX Disable	Transmitter Disable – Module disables on high or open
4	MOD-DEF(2)	Module Definition 2 – Two wire serial ID interface
5	MOD-DEF(1)	Module Definition 1 – Two wire serial ID interface
6	MOD-DEF(0)	Module Definition 0 – Grounded in module
7	Rate Select	Not Connected
8	LOS	Loss of Signal
9	VeeR	Receiver Ground
10	VeeR	Receiver Ground
11	VeeR	Receiver Ground
12	RD-	Inverse Received Data Out
13	RD+	Received Data Out
14	VeeR	Receiver Ground
15	VccR	Receiver Power
16	VccT	Transmitter Power
17	VeeT	Transmitter Ground
18	TD+	Transmitter Data In
19	TD-	Inverse Transmitter Data In
20	VeeT	Transmitter Ground



RECOMMENDED CIRCUIT SCHEMATIC

MECHANICAL DIMENSIONS

Units in mm

All dimensions are ±0.2mm unless otherwise specified.

